Plastic Strain Ratio (r-value) According ISO 10113, ASTM E517, and JIS Z 2254

ISO 10113, ASTM E517, and JIS Z 2254 specify methods for determining the plastic strain ratio (commonly called the r-value) of flat metallic materials, typically sheet and strip metals. The r-value is defined as the metal's ability to resist thinning or thickening when subjected to a tensile or compressive force.

r-value testing

To calculate the r-value, a test is performed to ISO 6892 and requires the use of axial and transverse extensometers. Where the behavior of true plastic width strain versus true plastic length strain is homogeneous, a single point calculation can be used. For material that exhibits inhomogeneous deformation, a regression method is recommended, and ISO 10113:2020 strongly recommends measuring transverse strain at multiple locations evenly distributed along the axial gauge length, to be averaged into one value. The AverEdge32™ feature of Instron's AVE2 non-contacting video extensometer can provide this capability, and these calculations can be done automatically in real time using the Bluehill® Universal materials testing software.

An ISO 10113, ASTM E517, or JIS Z 2254 test is typically performed at the same time as ISO 10275, ASTM E646, or JIS Z 2253, the tensile strain hardening exponent (n-value). Sheet metal testing applications require calculations such as yield strength, yield point elongation, ultimate tensile strength, r-value and n-value. These calculations place a high physical demand on traditional contacting extensometers for measuring axial and transverse strain. They need to allow for enough travel to test the specimens through break, but small gauge lengths make it more challenging to ensure high accuracy of the measurements. Additionally, relevant ASTM and ISO testing standards have accuracy requirements that must be achieved.

Historically, video extensometry is not frequently used in these applications, as most customers in the metals industry prefer traditional contacting extensometers and trust the reliability of the results. Significant advances in the technology of video extensometry offer metals testing customers other options. Not only do video extensometers like the AVE2 allow for simultaneous collection of axial and transverse strain data and reduce the maintenance required for wear and tear on knife-edges, they have also been shown to increase productivity and simplify testing. In addition, the AverEdge32™ feature has shown substantial improvement in reducing transverse strain measurement variability.

Instron's AutoX Biaxial automatic contacting extensometer is another excellent solution for biaxial strain measurement, as it provides repeatable r-value results that are not influenced by operator input as traditional extensometers are.

Related Content

Instron AverEdge 32

AverEdge32 构建于我们备受信赖的 AVE 2 高级视频引伸计之上,是 Instron 在为所有钣金材料提供出色横向应变精度方面的最新创新。

AVE 2 非接触式视频引伸计

第二代高级视频引伸计 (AVE 2) 在最快速、最精确的市售非接触式应变测量装置上采用专利测量技术。

自动接触式引伸计 - AutoX 750 型号

AutoX 750 是一款高分辨率、长行程自动接触式引伸计。可以将其安装到任何机电 3300、3400、5500、5900 或 6800 台式和落地式系统上,以及 LX、DX、HDX 和 KPX 静态液压测试系统上。它非常适合涉及塑料、金属、生物医学、复合材料、弹性体领域等的应用。AutoX 的最大行程为 750 mm,精度为 ± 1 µm。